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We develop a theory of wave propagation into an unstable state for a system of integral equations with
memory, long-range interactions, and transmutations. In particular we use continuous-time random walk theory
to describe the transport and transmutation processes. We use a hyperbolic scaling and Hamilton-Jacobi
formalism to derive formulas for the speed of propagation of the traveling wave generated by the system in the
long-time large-distance limit. Our theory is valid for arbitrary waiting-time, jump-length and, transmutation
probability density functions and the propagation speed can generally be found numerically. However, we
illustrate our theory by considering an example where analytic results are possible—that is, for a system of
Markovian reaction-transport equations. We derive formulas to determine the propagation speed in both the
so-called weakly coupled and strongly coupled cases.
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I. INTRODUCTION

Although in recent years there has been considerable
progress in the modeling of complex biological, chemical,
and physical systems in terms of interacting particle models,
there are still many problems with the scaling limits of large
systems[1], in particular the scaling problem for the long-
time large-distance description of wave propagation into an
unstable state of reaction-transport systems[2,3]. This prob-
lem has attracted considerable interest due to the large num-
ber of physical, chemical, and biological problems that can
be treated in terms of wave propagation into an unstable
state. A generic model, which describes these phenomena, is
the Fisher-Kolmogorov-Petrovskii-Piskunov(FKPP) equa-
tion [4]. It was originally introduced to investigate the spread
of advantageous genes. Since then, it has been widely used
to describe combustion waves, population growth and disper-
sion, the spread of epidemics, propagation of a vortex front
in an unstable fluid flow and magnetic fronts in disk dyna-
mos, etc. [2–9]. Recently, there has been a tremendous
amount of activity in extending the FKPP equation by intro-
ducing more realistic macroscopic descriptions of the trans-
port processes[7–10]. It has been recognized that the defi-
ciency of the FKPP equation is that it implicitly involves a
long-time large-distance parabolic scaling, while as far as
propagating fronts are concerned, the appropriate scaling is
more likely to be hyperbolic[3]. The key point about un-
stable states is that they are very sensitive to small distur-
bances. While on average transport processes may behave
diffusively, unstable media are more affected by the weak
tails of transport processes which can behave quite differ-
ently.

The extensions mentioned, however, have only been con-
cerned with a single integro-differential equation. One needs
to develop the theory of wave propagation into an unstable
state for a system of integro-differential equations, since this
would allow a more realistic modeling of various phenomena
in physics, chemistry, biology, etc. Most of the problems of
real interest are described by systems of reaction-transport
equations, rather than that of a single equation. Such systems
of equations often have a far richer structure than their single

counterpart, but in general there is no analytical closed-form
solution. The advantage in considering such systems is that it
will allow us to take into account(i) realistic multicompo-
nent cases,(ii ) long-range interactions in space and in time,
and (iii ) transmutations. Long-range interactions are a sig-
nificant feature in many areas of physics, chemistry, and bi-
ology, but may often be ignored through the difficulties of
how to deal with them. General theory for the derivation of
reaction-transport equations with distributed delay has been
recently developed by Vlad and Ross[11]. They introduced
the nonlinear age-dependent equations such that the transport
is described by the continuous-time random walk, while the
interactions between species are described by nonlinear
transformation rates. It should be noted that the nonlocal
evolution equations for multiple age variables were intro-
duced in population dynamics in[12].

The primary objectives of this paper are(i) to develop a
theory of wave propagation into an unstable state for the
complex system of integral equations and(ii ) to analyze sto-
chastic transport involving non-Markovian random processes
with long-range interactions and transmutations. We analyze
the dynamics of fronts for these equations using a geometri-
cal optics approach involving hyperbolic scaling and
Hamilton-Jacobi techniques.

II. MESOSCOPIC EQUATIONS

The purpose of this section is to give amesoscopicde-
scription of the complex reaction-transport system in terms
of a system of integral equations incorporating memory ef-
fects, long-range interactions in space, and transmutations.
The transport process is described by the continuous-time
random walk(CTRW) model [10,11,13], while the reaction
is assumed to be of KPP type[5].

Suppose that we have two different types of particles, 1
and 2, say. We introduce the concentrations of particles 1 and
2 at timet and positionx: n1st ,xd andn2st ,xd, respectively.
We assume that for particlei the waiting time between jumps
is random and the length of the jump is also random. Let us
denote bycistd the probability density function(PDF) for the
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waiting time andwiszd the PDF for the length of the jumps.
The mutation process is described as follows. Let us sup-

pose that while the particles wait between successive jumps,
particles of type 1 transmutate into particles of type 2 after a
random time given by the PDFb1std. Similarly, the opposite
transmutation of 2→1 occurs after a random time given by
the PDFb2std.

The concentration of the particles 1 and 2,n1st ,xd and
n2st ,xd, can then be described through the probabilistic-
balance-type equations

n1st,xd = n1s0,xdC1stdB1std +E
0

t E
−`

`

n1st − s,x − zd

3w1szdc1ssdB1ssddzds+E
0

t

f1sn1,n2dn1st − s,xd

3C1ssdB1ssdds+E
0

t

n2st − s,xdC1ssdb1ssdds s1d

and

n2st,xd = n2s0,xdC2stdB2std +E
0

t E
−`

`

n2st − s,x − zd

3w2szdc2ssdB2ssddzds+E
0

t

f2sn1,n2dn2st − s,xd

3C2ssdB2ssdds+E
0

t

n1st − s,xdC2ssdb2ssdds,

s2d

where we have introduced the new notations

Cistd =E
t

`

cissdds, i = 1,2, s3d

the probability that a particlei makes no jump over the in-
terval s0,td, and

Bistd =E
t

`

bissdds, i = 1,2, s4d

the probability that a particlei does not transmutate over the
interval s0,td. In what follows we assume that the local
growth ratef isn1,n2d is of KPP type:

Ui = sup
n1,n2.0

hf isn1,n2dj = f is0,0d. s5d

Let us now discuss the meaning of Eqs.(1) and(2). Con-
sider Eq.(1), which describes the balance of particles of type
1 at time t and positionx. The first term on the right-hand
side, n1s0,xdC1stdB1std, represents the probability that the
concentration of particles 1 at timet and positionx is just the
initial concentration, which can only happen provided that no
jump has occurred and that no transmutation takes place.
Due to the independence of the random waiting times and
the transmutation process, this probability is given by
C1stdB1std. The second term e0

t e−`
` n1st−s,x

−zdw1szdc1ssdB1ssddzdsrepresents the probability that a par-

ticle of type 1 at timet−s and positionx−z waits a times
before jumping a distancez and remains a particle of type 1
[i.e., not transmutating over the intervals0,sd]. The third
terme0

t f1sn1,n2dn1st−s,xdC1ssdB1ssddsdescribes the growth
rate of particle 1, which occurs provided that no jump takes
place—i.e., no loss of the particles 1 and thus no transmuta-
tion from 1 to 2. The last terme0

t n2st−s,xdC1ssdb1ssdds rep-
resents the probability that over the time intervals0,sd par-
ticles of type 1 seeks to transmutate to particles of type 2,
which can only happen provided no jump takes place[hence
the C1ssd term]. It should be noted that the system(1) and
(2) is derived by using probabilistic methods, but it is not a
stochastic system. It does not take into account the random
fluctuations of the species.

III. INTEGRO-DIFFERENTIAL EQUATIONS
WITH MEMORY

Let us note that the system of equations(1) and(2) can be
rewritten in terms of a system of integro-differential equa-
tions (see Appendix A):

]n1st,xd
]t

=E
0

t

a1st − sdE
−`

`

fn1ss,x − zd − n1ss,xdgw1szddzds

+E
0

t

z1st − sdfn2ss,xd − n1ss,xdgds+ f1sn1,n2dn1,

s6d

]n2st,xd
]t

=E
0

t

a1st − sdE
−`

`

fn2ss,x − zd − n2ss,xdgw2szddzds

+E
0

t

z2st − sdfn1ss,xd − n2ss,xdgds+ f2sn1,n2dn2,

s7d

where the “memory” kernelsaistd andbistd are defined in the
following manner. If we let

f istd = cistdBistd, gistd = Cistdbistd for i = 1,2, s8d

then

ãisud =
uf̃isud

1 − f̃ isud − g̃isud
, z̃isud =

ug̃isud

1 − f̃ isud − g̃isud
for i = 1,2,

s9d

where the Laplace transform of a functionkstd is denoted by

k̃sud:

k̃sud =E
0

`

kstde−utdt.

It is important to note that for arbitrary choices of
waiting-time and transmutation PDFs, it may prove impos-
sible to determine the inverse Laplace transform of the
memory kernels(9). Our methodology will depend only
upon the system of master equations(1) and (2) involving
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the waiting-time and transmutation PDFs, without resort to
any such memory kernels. The integro-differential approach
is preferable only in the simplest of cases. Let us consider
several nontrivial examples involving different assumptions
on the waiting time and transmutation PDFs.

A. Markov random walk

Let us suppose that the waiting-time and mutation PDFs
are exponentially distributed:

c1std = c2std = le−lt, bistd = gie
−git, i = 1,2. s10d

Then the appropriate substitutions of Eqs.(10) into Eqs.(1)
and (2) or equivalently into Eqs.(6) and (7) give (see Ap-
pendix B)

]n1

]t
= lE

−`

`

fn1st,x − zd − n1st,xdgw1szddz+ f1sn1,n2dn1

+ g1sn2 − n1d, s11d

]n2

]t
= lE

−`

`

fn2st,x − zd − n2st,xdgw2szddz+ f2sn1,n2dn2

+ g2sn1 − n2d. s12d

In the diffusion limit, we can expandnist ,x−zd by the Taylor
series to get a classical reaction-diffusion system

]n1

]t
=

D1

2

]2n1

]x2 + f1sn1,n2dn1 + g1sn2 − n1d, s13d

]n2

]t
=

D2

2

]2n2

]x2 + f2sn1,n2dn2 + g2sn1 − n2d, s14d

where the diffusion coefficientDi is determined as

Di = lim
l→`

si
2→0

lsi
2, si

2 =E z2wiszddz.

Here it was assumed thatezwiszddz=0.

B. Non-Markov random walk

Let us consider an example involving memory effects, in
particular via the transport process. Let us again suppose that
the transmutation PDF are exponential, but the waiting-time
PDF are given by the following member of the Gamma fam-
ily [14]:

c1std = c2std = l2te−lt, bistd = gie
−git, i = 1,2. s15d

Then the system of equations(1) and(2) can be rewritten as
(see Appendix C)

]n1

]t
= l2E

0

t

e−s2l+g1dsE
−`

`

fn1st − s,x − zd

− n1st − s,xdgw1szddzds+ f1sn1,n2dn1 + g1sn2 − n1d,

s16d

]n2

]t
= l2E

0

t

e−s2l+g2dsE
−`

`

fn2st − s,x − zd

− n2st − s,xdgw2szddzds+ f2sn1,n2dn2 + g2sn1 − n2d.

s17d

It is clear from Eqs.(16) and (17) that unlike the previous
example, the transport process is now dependent upon the
past history of the concentration of particles. The above
equations can be reduced further to the following system of
coupled hyperbolic reaction-diffusion equations(see Appen-
dix D):

t
]2n1

]t2
+ S1 − f1t − n1

]f1

]n1
t + 2g1tD ]n1

]t
− tSn1

]f1

]n2
+ g1D ]n2

]t

=
D1

2

]2n1

]x2 + s1 + g1tdf1sn1,n2dn1 + g1
2tsn2 − n1d, s18d

t
]2n2

]t2
+ S1 − f2t − n2

]f2

]n2
t + 2g2tD ]n2

]t
− tSn2

]f2

]n1
+ g2D ]n1

]t

=
D2

2

]2n2

]x2 + s1 + g2tdf2sn1,n2dn2 + g2
2tsn1 − n2d, s19d

where

t =
1

2l

is often termed as the relaxation time. The diffusion coeffi-
cient Di is determined by

Di =
l

2
E

−`

`

z2wiszddz.

IV. WAVE PROPAGATION, HAMILTON-JACOBI
THEORY

Of particular value is the problem of the dependence of
the propagation rate of traveling waves on the statistical
characteristics of the random walk model. This still remains
an unsettled controversial problem[3]. While other schemes
require integro-differential equations to be established for
mean-field scalars, we focus our attention on the balance
equations(1) and (2) and the corresponding Hamiltonian
functions. We can expect that under appropriate conditions,
the asymptotic solution of the system of equations(1) and
(2) will behave as a traveling wave with some velocityu
common to both components. The objective is to derive ef-
fective equations governing the large-scale dynamics of
fronts, varying only upon length scales larger than the char-
acteristic thickness of the traveling waves. The idea is that in
the long-time large-distancemacroscopiclimit, the detailed
shape of the traveling wave is not important and therefore
the problem of wave propagation is that of the dynamics of a
traveling front[3,5]. The technique to be used in this paper
involves a hyperbolic scalingx→x/«, t→ t /«, with the res-
caled concentrationsni

«st ,xd=nist /« ,x/«d, the nonlinear
transformation
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ni
«st,xd = Ai expS−

G«st,xd
«

D , s20d

and the Hamilton-Jacobi formalism. Positive parametersA1
andA2 represent the asymptotic stable equilibrium points of
the concentrationsn1

« andn2
«, respectively. For simplicity we

suppose the initial conditions

nis0,xd = HAi , x , 0,

0, x ù 0,
J s21d

to ensure the minimal propagation speed[4]. The main prob-
lem is to derive an eikonal equation from Eqs.(1) and (2)
generally of the form

FF ]G

]t
,
]G

]x
,xG = 0, s22d

whereGst ,xd=lim«→0 G«st ,xd andF is the integral operator.
This equation allows us to find the action functionalGst ,xd
and, thereby, the reaction front positionxstd in the long-time
large-distance limit, from the equationG(t ,xstd)=0 [3].

We are now in a position to determine Eq.(22) for the
functionGst ,xd. Let us make the substitution of Eq.(20) for
the rescaled concentration fieldni

«st ,xd into Eqs.(1) and(2);
then,

A1 = A1E
0

t/« E
−`

`

expFG«st,xd − G«st − «s,x − «zd
«

G
3w1szdc1ssdB1ssddzds+ A1E

0

t/«

f1sA1e
−G«/«,A2e

−G«/«d

3expFG«st,xd − G«st − «s,xd
«

GC1ssdB1ssdds

+ A2E
0

t/«

expFG«st,xd − G«st − «s,xd
«

GC1ssdb1ssdds,

s23d

A2 = A2E
0

t/« E
−`

`

expFG«st,xd − G«st − «s,x − «zd
«

G
3w2szdc2ssdB2ssddzds+ A2E

0

t/«

f2sA1e
−G«/«,A2e

−G«/«d

3expFG«st,xd − G«st − «s,xd
«

GC2ssdB2ssdds

+ A1E
0

t/«

expFG«st,xd − G«st − «s,xd
«

GC2ssdb2ssdds.

s24d

We derive the equation forGst ,xd by taking the limit«→0
in the above equations. It follows that

A1 = A1E
0

` E
−`

`

e]G/]ts+]G/]xzw1szdc1ssdB1ssddzds

+ A1U1E
0

`

e]G/]tsC1ssdB1ssdds

+ A2E
0

`

e−]G/]tsC1ssdb1ssdds, s25d

A2 = A2E
0

` E
−`

`

e]G/]ts+]G/]xzw2szdc2ssdB2ssddzds

+ A2U2E
0

`

e]G/]tsC2ssdB2ssdds

+ A1E
0

`

e]G/]tsC2ssdb2ssdds. s26d

Recall that the growth rate parameterUi is determined in Eq.
(5).

It turns out that the system of equations(25) and(26) can
be rewritten in a very useful form. Let us introduce the fol-
lowing notations—namely, the Hamiltonian functionH and
the generalized momentump:

H = −
]G

]t
, p =

]G

]x
, s27d

and the moment generating function

ŵispd =E
−`

`

wiszdepzdz.

Then Eqs.(25) and (26) become

A1F1 −E
0

`

e−Hsfŵ1spdc1ssd + U1C1ssdgB1ssddsG
− A2E

0

`

e−HsC1ssdb1ssdds= 0,

A2F1 −E
0

`

e−Hsfŵ2spdc2ssd + U2C2ssdgB2ssddsG
− A1E

0

`

e−HsC2ssdb2ssdds= 0.

The above system of linear algebraic equations forA1 andA2
has a nontrivial solution when the corresponding determinant
is equal to zero. This gives us the equation forGst ,xd:
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F1 −E
0

`

e−Hsfŵ1spdc1ssd + U1C1ssdgB1ssddsG
3F1 −E

0

`

e−Hsfŵ2spdc2ssd + U2C2ssdgB2ssddsG
−E

0

`

e−HsC1ssdb1ssddsE
0

`

e−HsC2ssdb2ssdds= 0.

s28d

Solving Eq.(28) for Hspd, one can find from Eq.(27) that
Gst ,xd=px−Hspdt which we recognize as the action func-
tional of a free particle. An expression for the propagation
rateu can then be found fromGst ,utd=0 [3]:

u =
H

p
, p

]H

]p
= Hspd. s29d

We may equivalently write

u = min
p
HHspd

p
J ,

providedd2H /dp2.0. Note that Eq.(28) is valid for arbi-
trary waiting-time, jump-length, and transmutation PDF and
generally can only be solved numerically. However, let us
illustrate the use of the above theory through the following
tractable example, where the waiting-time and transmutation
PDF are exponential and where analytic results are possible.

V. MARKOVIAN-COUPLED REACTION-TRANSPORT
EQUATIONS

Let us consider the case of reaction-transport equations
with transmutations when the waiting-time and mutation
PDF are exponential, Eq.(10):

c1std = c2std = le−lt, bistd = gie
−git, i = 1,2, s30d

corresponding to the system of equations

]n1

]t
= lE

−`

`

fn1st,x − zd − n1st,xdgw1szddz

+ f1sn1,n2dn1 + g1sn2 − n1d,

]n2

]t
= lE

−`

`

fn2st,x − zd − n2st,xdgw2szddz

+ f2sn1,n2dn2 + g2sn1 − n2d.

Let us make the appropriate substitutions of Eq.(30) into Eq.
(28). One can get

F1 − flŵ1spd + U1dE
0

`

e−sH+l+g1dsdsG
3F1 − flŵ2spd + U2gE

0

`

e−sH+l+g2dsdsG
− g1g2E

0

`

e−sH+l+g1dsdsE
0

`

e−sH+l+g2dsds= 0.

After a simple integration and rearrangement we get the fol-
lowing quadratic equation for the HamiltonianH:

„H − hlfŵ1spd − 1g + U1 − g1j…„H − hlfŵ2spd − 1g + U2

− g2j… − g1g2 = 0. s31d

In fact, this is a characteristic equation of the eigenvalue
problem

Slfŵ1spd − 1d + U1 − g1 g1

g2 lfŵ2spd − 1g + U2 − g2
DSA1

A2
D = HSA1

A2
D . s32d

To ensure the positivity ofA1 andA2 we need to choose the largest eigenvalueHspd:

Hspd =
1

2
lfŵ1spd − 1g +

1

2
lfŵ2spd − 1g +

U1 + U2

2
−

sg1 + g2d
2

+ÎFl

2
fŵ1spd − 1g −

l

2
fŵ2spd − 1g +

U1 − U2

2
+

g2 − g1

2
G2

+ g1g2. s33d

Note that this expression holds for any jump PDFwiszd. For
example, for Gaussian-distributed jumps with variancesi

2,

wiszd =
1

Î2psi
2
e−z2/2si

2
,

we have, for the functionŵispd,

ŵispd = esi
2p2/2.

For the discrete jumps distribution

wiszd =
dsz− aid

2
+

dsz+ aid
2

,

one can get
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ŵispd =
eaip + e−aip

2
.

The speed of propagation,u, can then be determined from
Eqs.(29) and (33).

Let us consider weakly coupled and strongly coupled
cases.

A. Weakly coupled case

Let us consider the so-called weakly coupled case when
the transmutation rates tend to zero:g1→0, g2→0. For sim-
plicity we assume thatg1=g2=g and considerg→0. If we
define

uispd =
1

2
lfŵispd − 1g +

1

2
Ui, i = 1,2, s34d

the Hamiltonian(33) becomes

Hgspd = u1spd + u2spd − g + Îfu1spd − u2spdg2 + g2.

s35d

We may consider the caseg=0; the Hamiltonian(35) is then

H0spd = u1spd + u2spd + uu1spd − u2spdu. s36d

There are three solutions for the momentump which gives
the minimum toH /p. They can be found from

du1

dp
=

u1

p
,

du2

dp
=

u2

p
, u1 = u2. s37d

It turns out that forg→0, the propagation speed may be
larger than in the decoupled caseg=0. This will be discussed
further in the section concerning coupled reaction-diffusion
equations. It is important to note that the unique solution will
depend explicitly uponU1, U2, l and the variance of the
jump PDF.

B. Strongly coupled case

Let us suppose again that the transmutations rates are the
sameg1=g2=g; then, the Hamiltonian(33) takes the form of
Eq. (35). Now consider the limitg→`; then,

H` = u1spd + u2spd.

For an arbitrary choice of jump PDF, the propagation
speed

u` = min
p
HH`spd

p
J

can only be found numerically. In the following section we
consider the diffusion limit where some analytic results are
possible.

1. Coupled reaction-diffusion equations

Let us consider the system of equations(6) and(7) in the
diffusion limit:

]n1

]t
=

D1

2

]2n1

]x2 + f1sn1,n2dn1 + g1sn2 − n1d, s38d

]n2

]t
=

D2

2

]2n2

]x2 + f2sn1,n2dn2 + g2sn1 − n2d. s39d

The Hamiltonian in Eq.(33) becomes

H = SD1 + D2

2
Dp2

2
+

U1 + U2

2
−

g1 + g2

2

+ÎFSD1 − D2

2
Dp2

2
+

U1 − U2

2
+

g2 − g1

2
G2

+ g1g2.

s40d

Then Eq.(40) together with Eq.(29) allows us to determine
the propagation speedu which is identical to the result ob-
tained by Freidlin[15] (see Appendix E).

Even in such “simple” reaction-diffusion equations like
the above, the behavior of the traveling waves is often far
richer than their singular counterparts. As an example, let us
analyze the behavior of the propagation speed determined
from Eq.(40) in relation to the transmutation ratesg1 andg2.
In what follows we assume without loss of generality that
U1.U2.

2. Weak coupling

For g1→0, g2→0 we have from Eq.(37) that there are
three possible values ofp satisfying, minphH /pj:

p =Î2U1

D1
,Î2U2

D2
,Î2sU1 − U2d

D2 − D1
.

Let us assume thatU1.U2. Now we are in a position to find
u=minphH /pj; it turns out thatu depends on the constants
U1, U2, D1, andD2 as follows:

u =5
Î2U1D1, if D1 ù D2,

Î2U1D1, if D1 , D2,2U1D1 ù U1D2 + U2D1,

Î2U2D2, if D1 , D2,2U2D2 ù U1D2 + U2D1,

U1D2 − U2D1

Î2sU1 − U2dsD2 − D1d
if D1 , D2, maxh2U1D1,2U2D2j , U1D2 + U2D1.6 s41d
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We note that the above result was first derived by Freidlin
[15]. If we supposeD1→0, U2→0, then the system of
reaction-diffusion equations reduces to

]n1

]t
=

D1

2

]2n1

]x2 + gsn2 − n1d,

]n2

]t
= U2n2s1 − n2d + gsn1 − n2d.

For g=0, it is clear that no traveling front will be estab-
lished; however, in the limitg→0, the propagation speed is
given as[15]

u =ÎU1D2

2
.

The physical interpretation is that of a “piggyback”-type ef-
fect; one component of the system provides the diffusion and
the other the growth.

3. Strong coupling

Let us suppose again thatg1=g2=g and consider the limit
g→`; then, we obtain

H` = SD1 + D2

2
Dp2

2
+

U1 + U2

2
. s42d

It clearly follows that the momentump, which gives the
minimum toH /p is

p =ÎU1 + U2

D1 + D2

and corresponding propagation speed is

u` =ÎsU1 + U2dsD1 + D2d
2

. s43d

As in the weakly coupled case, it is possible that the wave
speed is greater than in the decoupled case. Consider again
the caseD1→0, U2→0; then,u` becomes

u` =ÎU1D2

2
.

One can see that propagation speeds in the weakly coupled
and strongly coupled cases are equal.

We have already mentioned that in general, for arbitrary
waiting-time, jump length, and transmutation PDFs, one
needs to proceed numerically; however, as demonstrated in
the Markovian weakly coupled reaction-diffusion case, re-
sults are critical upon the relationship between the growth
and diffusion constantsU1, U2, D1, and D2. In the more
complex systems of reaction-transport equations, where one
may introduce non-Markovian waiting-time PDFs and jump-
length PDFs with long-range behavior, the introduction of
extra parameters will mean that one will have to take great
care in order to capture the correct structure of the solutions.

VI. CONCLUSION

In this paper we have presented a model for asystemof
reaction-transport equations with transmutations incorporat-
ing long-memory and long-range interactions. In particular,
we use a probabilistic approach based upon the CTRW
theory, which is valid forarbitrary waiting-time, jump-
length, and transmutation PDFs. We primarily consider
probabilistic-balance-type equations, but also show their
equivalence to a system of generalized master equations in-
volving memory kernels for the transport and transmutation
processes. By using a hyperbolic scaling and Hamilton-
Jacobi formalism we derive formulas which allow us to de-
termine the propagation speed of the traveling front gener-
ated by such systems of equations. In general, each choice of
PDF for the random processes will result in equations which
have to be solved numerically and need to be investigated in
order to determine the structure of the solutions. We illustrate
our model by considering the more tractable interacting sys-
tems of Markovian reaction-transport equations, including
deriving formulas for the special weakly and strongly
coupled cases.

APPENDIX A: DERIVATION
OF INTEGRO-DIFFERENTIAL EQUATIONS

For brevity, let us consider only Eq.(1):

n1st,xd = n1s0,xdC1stdB1std +E
0

t E
−`

`

n1st − s,x

− zdw1szdc1ssdB1ssddzds+E
0

t

f1sn1,n2dn1st

− s,xdC1ssdB1ssdds+E
0

t

n2st − s,xdC1ssdb1ssdds.

sA1d

We define the Laplace and Fourier transforms as

f̃sud =E
0

`

fstde−utdt, ŵskd =E
−`

`

wsxdeikxdx sA2d

and the Fourier-Laplace transform as

n̂̃su,kd =E
−`

` E
0

`

nst,xde−ut+ikxdtdx. sA3d

For ease of notation, we introduce two functionsf1std and
g1std:

f1std = c1stdB1std, g1std = C1stdb1std. sA4d

The termC1stdB1std which appears in Eq.(A1) is related to
f1std andg1std in the following manner:

C1stdB1std = 1 −E
0

t

ff1ssd + g1ssdgds.

This follows from theC1s0dB1s0d=1 and
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d

dt
hC1stdB1stdj = − c1stdB1std − C1stdb1std.

If we take the Fourier-Laplace transform of Eq.(A1), then

n̂̃1su,kd = n̂1s0,kd
1 − f̃1sud − g̃1sud

u
+ n̂̃1su,kdŵ1skd f̃1sud

+ F̃
ˆ

1su,kd
1 − f̃1sud − g̃1sud

u
+ n̂̃2su,kdg̃1sud,

sA5d

where F̃
ˆ

1su,kd is the Fourier-Laplace transform of
f1sn1,n2dn1st ,xd. Here we used the convolution property

n̂̃1su,kdŵ1skd f̃1sud =E
−`

` E
0

` FE
0

t E
−`

`

n1st − s,x − zd

3w1szdf1stddzdsGe−ut+ikxdtdx.

sA6d

Rearranging Eq.(A5) as

n̂̃1su,kdu

1 − f̃1sud − g̃1sud
= n̂1s0,kd + uŵ1skd

n̂̃1su,kd f̃1sud

1 − f̃1sud − g̃1sud

+ F̃
ˆ

1sn1su,kd,n2su,kdd

+ u
n̂̃2su,kdg̃1sud

1 − f̃1sud − g̃1sud
sA7d

and introducing the auxiliary functions

ã1sud =
f̃1sudu

1 − f̃1sud − g̃1sud
, z̃1sud =

g̃1sudu

1 − f̃1sud − g̃1sud
,

sA8d

we find, then,

un̂̃1su,kd = n̂1s0,kd + ã1sudn̂̃1su,kdfŵ1skd − 1g + F̃
ˆ

1su,kd

+ g̃1sudfn̂̃2su,kd − n̂̃1su,kdg. sA9d

By applying the inverse Laplace-Fourier transform to Eq.
(A9), we get the equation

]n1st,xd
]t

=E
0

t

a1st − sdE
−`

`

fn1ss,x − zd − n1ss,xdgw1szddzds

+E
0

t

g1st − sdfn2ss,xd − n1ss,xdgds

+ fsn1,n2dn1st,xd.

APPENDIX B: MARKOV RANDOM WALKS

For brevity we consider only the derivation of Eq.(11).
There are two ways to proceed: either make the appropriate

substitutions of Eq.(10) into Eq. (1) and differentiate both
sides directly, or alternatively, we can make use of the
integro-differential master equation(6). We follow the latter.
Let us first determine the functions(8):

f1std = cssdE
t

`

b1ssdds= le−sl+g1dt,

g1std = b1stdE
t

`

cssdds= g1e
−sl+g1dt.

The respective Laplace transforms are

f̃1sud =
l

u + l + g1
, g̃1sud =

g1

u + l + g1
.

If we substitute these expressions into

ãisud =
uf̃isud

1 − f̃ isud − g̃isud
, z̃isud =

ug̃isud

1 − f̃ isud − g̃isud
,

sB1d

then the Laplace transforms(9) can be found to be

ã1sud = l, z̃1sud = g1.

This corresponds to thed functions for the inverse Laplace
transforms:

a1std = ldstd, z1std = g1dstd. sB2d

Substituting Eq.(B2) into Eq. (6) gives Eqs.(11) and (12).

APPENDIX C: NON-MARKOV RANDOM WALKS

Similarly to Appendix B, we find

f1std = cssdE
t

`

b1ssdds= l2te−ltE
t

`

g1e
−g1sds= l2te−sl+g1dt,

g1std = b1stdE
t

`

cssdds= g1e
−g1tE

t

`

l2se−lsds

= g1s1 + ltde−sl+g1dt,

with the respective Laplace transforms

f̃1sud = S l

u + l + g1
D2

,

g̃1sud = g1F 1

u + l + g1
+

l

su + l + g1d2G .

The memory kernels defined in Eq.(9) can be found as

ã1sud =
1

u + 2l + g1
, z̃1sud = g1.

This corresponds to the inverse Laplace transforms

a1std = e−s2l+g1dt, z1std = g1dstd. sC1d

Substituting Eq.(C1) into Eq. (6) gives Eq.(16).
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APPENDIX D: HYPERBOLIC REACTION-TRANSPORT
EQUATIONS

For brevity let us consider only Eq.(16):

]n1

]t
=E

0

t

l2e−s2l+g1dsE
−`

`

fn1st − s,x − zd

− n1st − s,xdgw1szddzds+ n1f1sn1,n2d + g1sn2 − n1d.

sD1d

If we make the change of variabler = t−s,

]n1

]t
= e−s2l+g1dtE

0

t

l2es2l+g1drE
−`

`

fn1sr,x − zd

− n1sr,xdgw1szddzdr+ f1sn1,n2dn1 + g1sn2 − n1d,

sD2d

then differentiating both sides with respect tot one can get

]2n1

]t2
= − s2l + g1de−s2l+g1dtE

0

t

l2es2l+g1drE
−`

`

fn1sr,x − zd

− n1sr,xdgw1szddzdr+ l2E
−`

`

fn1st,x − zd

− n1st,xdgw1szddz+ S f1 + n1
]f1

]n1
D ]n1

]t
+ n1

]f1

]n2

]n2

]t

+ g1S ]n2

]t
−

]n1

]t
D , sD3d

Then, from Eqs.(D3) and (D2),

]2n1

]t2
= − s2l + g1dS ]n1

]t
− f1sn1,n2dn1 − g1sn2 − n1dD

+ l2E
−`

`

fn1st,x − zd − n1st,xdgw1szddz

+ S f1 + n1
]f1

]n1
D ]n1

]t
+ n1

]f1

]n2

]n2

]t
+ g1S ]n2

]t
−

]n1

]t
D ,

sD4d

By rearranging Eq.(D4) and dividing both sides by

l =
1

2t
,

one can get

t
]2n1

]t2
+ S1 − f1t − n1

]f1

]n1
t + 2g1tD ]n1

]t
− tSn1

]f1

]n2
+ g1D ]n2

]t

=
1

4t
E

−`

`

fn1st,x − zd − n1st,xdgw1szddz+ s1 + g1td

3ff1sn1,n2dn1 + g1sn2 − n1dg. sD5d

By expandingn1st ,x−zd into a Taylor series and taking the
first three terms in the transport integral we arrive at Eq. 18.

APPENDIX E: REACTION-DIFFUSION EQUATIONS

In the following we show that the solution(40) and(29) is
identical to that derived by Freidlin[15]. In particular, for the
system of coupled reaction-diffusion equations(13) and(14),

]n1

]t
=

D1

2

]2n1

]x2 + f1sn1,n2dn1 + g1sn2 − n1d,

]n2

]t
=

D2

2

]2n1

]x2 + f2sn1,n2dn2 + g2sn1 − n2d,

Freidlin [15] showed that the propagation speedu is given by

u =
ulsa * d + Bu
Î2sa * − Ad

,

wherelsad is the maximal eigenvalue of the matrix

SaD1 − g1 g1

g2 aD2 − g1
D

anda* is the root of the equation

2
dlsad

da
sa − Ad = lsad + B,

where A=sU1−U2d / sD1−D2d, B=sD1U2−D2U1d / sD1−D2d.
Recall Eq.(40):

Hspd = SD1 + D2

2
Dp2

2
+

U1 + U2

2
−

g1 + g2

2

+ÎFSD1 − D2

2
Dp2

2
+

U1 − U2

2
+

g2 − g1

2
G2

+ g1g2.

sE1d

To find the speed of propagationu we first determinep from
Eq. (29):

]Hspd
]p

=
Hspd

p
. sE2d

If we make the substitutiona=p2/2+A, where A=sU1

−U2d / sD1−D2d, then Eq.(E2) becomes

]HfÎ2sa − Adg
]a

]a

]p
=

HfÎ2sa − Adg
p

. sE3d

Clearly ]a /]p=p=Î2sa−Ad: therefore,
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2
]HfÎ2sa − Adg

]a
sa − Ad = HfÎ2sa − Adg,

and in terms of the notation used by FreidlinHfÎ2sa−Adg
=lsad+B, whereB=sD1U2−D2U1d / sD1−D2d: thus,

2
dlsad

da
sa − Ad = lsad + B,

with propagation speed

u =
Hspd

p
=

ulsad + Bu
Î2sa − Ad

.

[1] A. De Masi and E. Presutti,Mathematical Methods for Hydro-
dynamic Limits, Lectures Notes in Mathematics Vol. 1501
(Springer, Berlin, 1991).

[2] U. Ebert and W. van Saarloos, Physica D146, 1 (2000).
[3] S. Fedotov, Phys. Rev. Lett.86, 926 (2001).
[4] J. D. Murray,Mathematical Biology(Springer-Verlag, Berlin,

1989).
[5] M. Freidlin, Markov Processes and Differential Equations:

Asymptotic Problems(Birkhauser, Basel, 1996).
[6] P. K. Maini, FORMA 10(3), 145 (1995); 11(1), 1 (1996).
[7] K. P. Hadeler, inReaction Transport Systems, in Mathematics

Inspired by Biology, edited by V. Capasso and O. Diekmann,
CIME Lectures, Florence(Springer-Verlag, Berlin, 1998).

[8] J. Fort and V. Méndez, Phys. Rev. Lett.82, 867 (1999); W.
Horsthemke, Phys. Lett. A263, 285(1999); S. Fedotov, Phys.

Rev. E 59, 5040(1999); S. Fedotov and V. Méndez,ibid. 66,
030102(2002).

[9] S. Fedotov, A. Ivanov, and A. Zubarev, Phys. Rev. E65,
036313(2002).

[10] S. Fedotov and Y. Okuda, Phys. Rev. E66, 021113(2002).
[11] M. O. Vlad and J. Ross, Phys. Rev. E66, 061908(2002).
[12] M. O. Vlad and V. T. Popa, Math. Biosci.76, 161(1985); 87,

173 (1987).
[13] W. Montroll and M. Shlesinger,On the Wonderful World of

Random Walks(Elsevier Science Publishers BV, Amsterdam,
1984).

[14] W. Feller, An Introduction to Probability Theory and Its Ap-
plications, 2nd ed.(Wiley, New York, 1971).

[15] M. I. Freidlin, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
46, 222 (1986); Ann. Prob. 19, 29 (1991).

S. FEDOTOV AND Y. OKUDA PHYSICAL REVIEW E70, 051108(2004)

051108-10


